Minister of Justice will have last say on Cuban same-sex marriage …… but

A CubaNews translation. Edited by Walter Lippmann. Thanks to the Cuban connection for this press release that preceeded the transgender wedding that took place in 2011 and the events that caused it to occur. Remembering earlier this year we had seen news that gay marriage may have been legal by July but the marriages highlighted here weren’t really gay marriages weren’t they? seeing both events had persons undergoing sex reassignment surgeries to then marry.

see: Cuba may have gay marriage legal by July on Gay Jamaica Watch
The decision to green-light same-sex unions “is up to the Minister of Justice”, according to Mariela Castro Espín, director of the National Center for Sex Education (CENESEX).

“We’ll keep fighting to get an answer soon”, the sexologist said during the celebrations for the 10th anniversary of the TransCuba Group.

Legalization of same-sex marriage is one of the reforms CENESEX has been striving to include in Cuba’s new Family Code since 2007.

The issue came to the fore again recently when former CENESEX staff member Wendy Iriepa, a transgender woman who had a sex-change operation in 2007, married a gay man who is against the Center’s activity.

Iriepa quit her job as health assistant on July 7, citing “differences” with Mariela Castro regarding her new fiancé. She had decided to undergo sex-reassignment surgery a year before the Cuban Ministry of Public Health passed Resolution 126 declaring such service legal and free of charge. In early 2011, she got a whole new set of identity documents.

“I always thought the wedding of a transsexual these days would give us all an opportunity to celebrate TransCuba’s achievement together, but Wendy took that right away from us. I hope Cuban society understands that not all transgender people are the same,” Marifí Herández Lugo remarked.

CENESEX Director Castro Espín, in turn, admitted to be “very happy that she can get married with a man who seems to be the love of her life, even if he’s not exactly the straight man she expected to find. We wish her all the best, because we have worked very hard for our women’s happiness.”

In response to journalists who asked about the likely politicization of a wedding where the dissident blogger Yoani Sánchez and her husband acted at witnesses, the sexologist pointed out: “The U.S. government provides funds for LGBT groups opposed to what we do at CENESEX and smear campaigns against Cuba, and some people fall for it. They just don’t like CENESEX’s success”.

Since 1988, as a result of the Center’s efforts, 16 genital modification operations have been conducted and 3 sets of completely new IDs have been issued, out of 31 requests Cuban transsexuals have submitted to the National Commission for Transgender People’s Affairs.

The first wedding of a Cuban transsexual took place in the late 1980s, after doctors in the Island performed a successful operation on Mavi Susset or Mabi Suse, who has been married twice since then. This without any media coverage as it is understood at the time until a documentary was done on her and transgenderism in Cuba called in the wrong body – here is an excerpt of the piece

CENESEX has championed a widespread campaign to raise political awareness of, and gain respect for, people’s free sexual orientation and gender identity.

Scripps Research scientists reveal surprising picture of how powerful antibody neutralizes HIV

PGT 128

Caption: This is the PGT 128 antibody in action.

Credit: Image courtesy of the Wilson lab, The Scripps Research Institute

Usage Restrictions: None

LA JOLLA, CA, October 13, 2011 – Researchers at The Scripps Research Institute have uncovered the surprising details of how a powerful anti-HIV antibody grabs hold of the virus. The findings, published in Science Express on October 13, 2011, highlight a major vulnerability of HIV and suggest a new target for vaccine development.

“What’s unexpected and unique about this antibody is that it not only attaches to the sugar coating of the virus but also reaches through to grab part of the virus’s envelope protein,” said the report’s co-senior author Dennis Burton, a professor at The Scripps Research Institute and scientific director of the International AIDS Vaccine Initiative’s (IAVI) Neutralizing Antibody Center, based on the Scripps Research La Jolla campus.

“We can now start to think about constructing mimics of these viral structures to use in candidate vaccines,” said co-senior author Ian Wilson, who is Hansen Professor of Structural Biology and member of the Skaggs Institute for Chemical Biology at Scripps Research.

Other institutions in the United States, United Kingdom, Japan, and the Netherlands contributed to the research as part of an ongoing global HIV vaccine development effort.

Getting a Better Grip on HIV

Researchers from the current team recently isolated the new antibody and 16 others from the blood of HIV-infected volunteers, in work they reported online in the journal Nature on August 17, 2011. Since the 1990s, Burton, Wilson, and other researchers have been searching for such “broadly neutralizing” antibodies against HIV—antibodies that work against many of the various strains of the fast-mutating virus—and by now have found more than a dozen. PGT 128, the antibody described in the new report, can neutralize about 70 percent of globally circulating HIV strains by blocking their ability to infect cells. It also can do so much more potently—in other words, in smaller concentrations of antibody molecules—than any previously reported broadly neutralizing anti-HIV antibody.

The new report illuminates why PGT 128 is so effective at neutralizing HIV. Using the Wilson lab’s expertise in X-ray crystallography, Robert Pejchal, a research associate in the Wilson lab, determined the structure of PGT 128 joined to its binding site on molecular mockups of the virus, designed in part by Robyn Stanfield and Pejchal in the Wilson group and Bill Schief, now an IAVI principal scientist and associate professor at Scripps Research, and his group. With these structural data, and by experimentally mutating and altering the viral target site, they could see that PGT 128 works in part by binding to glycans on the viral surface.

Thickets of these sugars normally surround HIV’s envelope protein, gp120, largely shielding it from attack by the immune system. Nevertheless, PGT 128 manages to bind to two closely spaced glycans, and at the same time reaches through the rest of the “glycan shield” to take hold of a small part of structure on gp120 known as the V3 loop. This penetration of the glycan shield by PGT 128 was also visualized by electron microscopy with a trimeric form of the gp120/gp41 envelope protein of HIV-1 by Reza Kayat and Andrew Ward of Scripps Research; this revealed that the PGT 128 epitope appears to be readily accessible on the virus.

“Both of these glycans appear in most HIV strains, which helps explain why PGT 128 is so broadly neutralizing,” said Katie J. Doores, a research associate in the Burton lab who was one of the report’s lead authors. PGT 128 also engages V3 by its backbone structure, which doesn’t vary as much as other parts of the virus because it is required for infection.

PGT 128’s extreme potency is harder to explain. The antibody binds to gp120 in a way that presumably disrupts its ability to lock onto human cells and infect them. Yet it doesn’t bind to gp120 many times more tightly than other anti-HIV antibodies. The team’s analysis hints that PGT 128 may be extraordinarily potent because it also binds two separate gp120 molecules, thus tying up not one but two cell-infecting structures. Other mechanisms may also be at work.

Toward an AIDS Vaccine

Researchers hope to use the knowledge of these antibodies’ binding sites on HIV to develop vaccines that stimulate a long-term—perhaps lifetime—protective antibody response against those same vulnerable sites.

“We’ll probably need multiple targets on the virus for a successful vaccine, but certainly PGT 128 shows us a very good target,” said Burton.

Intriguingly, the basic motif of PGT 128’s target may mark a general vulnerability for HIV. “Other research is also starting to suggest that you can grab onto two glycans and a beta strand and get very potent and broad neutralizing antibodies against HIV,” Wilson said.




In addition to Pejchal, Doores, and Khayat, Laura M. Walker of Scripps Research and Po-Ssu Huang of University of Washington at Seattle were co-first authors of the study, “A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield.” Along with Wilson, Burton, and Ward, additional contributors were Sheng-Kai Wang, Chi-Huey Wong, Robyn L. Stanfield, Jean-Philippe Julien, Alejandra Ramos, Ryan McBride, and James C. Paulson of Scripps Research, and Pascal Poignard, and William R. Schief of Scripps Research, IAVI and University of Washington at Seattle; Max Crispin and Christopher N. Scanlan of the University of Oxford; Rafael Depetris and John P. Moore of Weill Medical College of Cornell University; Umesh Katpally, Andre Marozsan, Albert Cupo, and William C. Olson of Progenics Pharmaceuticals; Sebastien Maloveste of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health; Yan Liu and Ten Feizi of Imperial College, London; Yukishige Ito of the RIKEN Advanced Science Institute in Japan; and Cassandra Ogohara of University of Washington at Seattle.

The research was supported by the International AIDS Vaccine Initiative, National Institutes of Health, the U.S. Department of Energy, the Canadian Institutes of Health Research, the UK Research Councils, the Ragon Institute, and other organizations.

Contact: Mika Ono
Scripps Research Institute